Konf Platform: Declarative Multi-Agent Orchestration for Scalable Stochastic Systems

Research project investigating composable architectures for coordinating autonomous agents across distributed, non-deterministic workflows

Sourav Sharan · sourav.sharan.1411@student.uu.se · souravsharan.com

Abstract

The Konf platform addresses fundamental challenges in orchestrating multi-agent AI systems at scale: handling stochastic processes, maintaining contextual memory across interactions, and composing complex workflows declaratively. This work presents a modular architecture consisting of three core components—Sutra (workflow orchestration), Smrti (hierarchical memory), and a tool integration layer—designed to enable scalable, maintainable, and observable multi-agent systems. The platform demonstrates applicability beyond agentic AI, extending to domains such as federated learning, robotics coordination, and distributed stochastic process management.

1. System Architecture Overview

The Konf platform adopts a layered architecture where each component addresses a specific aspect of multi-agent coordination:

┌─────────────────────────────────────────────────────────────────┐
│                        APPLICATION LAYER                        │
│              (Multi-Agent Workflows, Use Cases)                 │
└─────────────────────────────────────────────────────────────────┘
                                 │
                                 ▼
┌─────────────────────────────────────────────────────────────────┐
│                     ORCHESTRATION LAYER                         │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────────────┐ │
│  │    SUTRA     │  │    SMRTI     │  │   TOOL REGISTRY      │ │
│  │  Workflow    │  │  Hierarchical│  │   (konf-tools)       │ │
│  │  Engine      │  │  Memory      │  │                      │ │
│  └──────────────┘  └──────────────┘  └──────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
                                 │
                                 ▼
┌─────────────────────────────────────────────────────────────────┐
│                     INFRASTRUCTURE LAYER                        │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────────────┐ │
│  │  LLM         │  │  Vector      │  │   External APIs      │ │
│  │  Providers   │  │  Databases   │  │   & Services         │ │
│  └──────────────┘  └──────────────┘  └──────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘

1.1 Design Principles

2. Component Architecture

2.1 Sutra: Declarative Workflow Orchestration

Sutra provides a graph-based execution engine for multi-agent workflows. Agents are specified as directed acyclic graphs (DAGs) with support for cycles, conditional routing, and parallel execution.

# Example: Research Agent with ReAct Pattern
name: research_agent
version: "1.0"
format: advanced
entry: analyze_query

llm_profiles:
  default:
    model: openai/gpt-4
    temperature: 0.7
    timeout: 60

nodes:
  - id: analyze_query
    type: llm
    profile: default
    prompt: |
      Query: {{ input }}
      
      What information do we need to answer this?
      List specific search queries.
    edges:
      - target: search_web

  - id: search_web
    type: tool
    tool: web_search
    args:
      query: "{{ analyze_query }}"
    edges:
      - target: synthesize

  - id: synthesize
    type: llm
    profile: default
    prompt: |
      Original query: {{ input }}
      Search results: {{ search_web }}
      
      Synthesize a comprehensive answer.
    edges:
      - target: END

Key Features:

2.2 Smrti: Hierarchical Memory System

Smrti implements a multi-tier memory architecture inspired by cognitive science, providing working memory, semantic storage, and long-term episodic persistence.

Memory Tier Hierarchy:

┌──────────────────────────────────────────────────────────────┐
│  WORKING MEMORY (Context Window)                             │
│  - Current conversation state                                │
│  - Immediate context (last N turns)                          │
│  - TTL: Session duration                                     │
└──────────────────────────────────────────────────────────────┘
                            ▼
┌──────────────────────────────────────────────────────────────┐
│  SHORT-TERM MEMORY (Recent Context)                          │
│  - Recent interactions (hours to days)                       │
│  - Summarized conversation history                           │
│  - TTL: 24-72 hours                                          │
└──────────────────────────────────────────────────────────────┘
                            ▼
┌──────────────────────────────────────────────────────────────┐
│  EPISODIC MEMORY (Event Sequences)                           │
│  - Structured event logs                                     │
│  - Agent action histories                                    │
│  - TTL: 7-30 days                                            │
└──────────────────────────────────────────────────────────────┘
                            ▼
┌──────────────────────────────────────────────────────────────┐
│  SEMANTIC MEMORY (Knowledge Graph)                           │
│  - Entity relationships                                      │
│  - Factual knowledge                                         │
│  - TTL: Permanent with decay                                 │
└──────────────────────────────────────────────────────────────┘
                            ▼
┌──────────────────────────────────────────────────────────────┐
│  LONG-TERM MEMORY (Vector Embeddings)                        │
│  - Semantic similarity search                                │
│  - Document chunks                                           │
│  - TTL: Permanent                                            │
└──────────────────────────────────────────────────────────────┘

Memory Operations:

# Storing in appropriate tier
- id: store_insight
  type: memory
  operation: store
  tier: SEMANTIC
  data:
    entities: ["{{ extracted_entities }}"]
    relationships: ["{{ extracted_relations }}"]
    timestamp: "{{ now }}"

# Retrieving with hybrid search
- id: retrieve_context
  type: memory
  operation: retrieve
  tier: LONG_TERM
  query: "{{ user_query }}"
  strategy: hybrid  # keyword + vector similarity
  limit: 5

2.3 Tool Integration Layer

The tool registry provides a unified interface for external service integration with type safety and sandboxed execution.

Tool Registry

Dynamic discovery and registration of tools with JSON Schema validation

Adapter Pattern

Uniform interface for APIs, databases, and external services

Sandboxing

Jinja2-based templating with restricted evaluation context

3. Advanced Orchestration Patterns

3.1 Multi-Agent Coordination

Sutra enables complex multi-agent systems through declarative composition. Agents can be nested as tools, enabling hierarchical delegation:

# Coordinator agent delegates to specialists
nodes:
  - id: classify_request
    type: llm
    prompt: |
      Request: {{ input }}
      
      Which specialist should handle this?
      - research_agent: information gathering
      - code_agent: programming tasks
      - analysis_agent: data analysis
    edges:
      - target: research_specialist
        condition: "'research' in classify_request"
      - target: code_specialist
        condition: "'code' in classify_request"

  - id: research_specialist
    type: tool
    tool: agents:research_agent
    args:
      input: "{{ input }}"
    edges:
      - target: synthesize_results

  - id: code_specialist
    type: tool
    tool: agents:code_agent
    args:
      input: "{{ input }}"
    edges:
      - target: synthesize_results

3.2 Reasoning Patterns

The platform implements several reasoning patterns as composable node types:

# Tree-of-Thoughts example
- id: explore_solutions
  type: tree_of_thoughts
  branches: 3
  depth: 2
  prompt: "Generate solution approaches for: {{ problem }}"
  evaluation_prompt: |
    Rate this solution 1-10:
    Solution: {{ solution }}
    Criteria: feasibility, cost, time
  selection_strategy: best
  edges:
    - target: implement_solution

4. Research Contributions and Vision

4.1 Problem Statement

Current multi-agent frameworks face several limitations:

4.2 Proposed Solutions

The Konf platform addresses these challenges through:

  1. Static Analysis: YAML validation with JSON Schema catches errors before deployment
  2. Memory Abstraction: Hierarchical memory tiers with automatic consolidation policies
  3. Declarative Composition: Node types as composable building blocks
  4. Tracing Integration: Built-in observability with LangFuse/Langsmith
  5. Provider Abstraction: Dependency injection enables testing and provider swapping

4.3 Beyond Agentic AI

The declarative orchestration model extends to other domains requiring coordination of stochastic processes:

Federated Learning

Coordinate distributed model training across edge devices with heterogeneous hardware and unreliable networks

Robot Fleet Management

Orchestrate warehouse robots with collision avoidance, task allocation, and failure recovery

Clinical Trial Coordination

Manage multi-site trials with protocol adherence, adverse event monitoring, and adaptive protocols

Smart Manufacturing

Predictive maintenance, quality control, and supply chain optimization with real-time adaptation

5. Implementation Status

5.1 Production Projects

Two production applications demonstrate the platform's capabilities:

Aspire AI

A life assistant chatbot helping users with goal setting, task management, and personal development. Built with Sutra orchestration and Smrti memory system for context-aware conversations.

aspire-ai-47896.web.app

Apartmint

An intelligent real estate chatbot that helps users find housing listings through natural conversation. Demonstrates multi-step reasoning and tool integration for property search and filtering.

apartmint.bertslab.com

5.2 Component Status

Component Status (October 2025):

Sutra (Orchestration)    ████████████████████ 100% ✅
├─ YAML specification    Complete
├─ Graph execution       Complete
├─ LLM adapters          Complete (OpenAI, Anthropic, Gemini)
├─ Tool integration      Complete
└─ Tracing              Complete

Smrti (Memory)           ███████████████░░░░░  75% 🚧
├─ Tier architecture     Complete
├─ Vector storage        Complete
├─ Consolidation logic   In progress
└─ Query optimization    Planned

Tool Integration         ████████████████░░░░  80% 🚧
├─ Registry system       Complete
├─ Basic tools          Complete
├─ MCP integration      In progress
└─ Sandboxing           Planned

Gateway (API)            ███████████░░░░░░░░░  55% 🚧
├─ Session management    Complete
├─ Multi-tenancy        In progress
├─ Rate limiting        Planned
└─ Deployment tools     Planned

6. Future Research Directions

6.1 Static Analysis Engine

Develop compile-time validation for agent specifications, including:

6.2 Vak Language

Development of a domain-specific language for agent workflows (~70% complete) that provides:

6.3 Formal Verification

Investigate formal methods for verifying agent properties:

7. References and Related Work

8. Repository Structure

konf-platform/
├── sutra/                  # Orchestration engine
│   ├── src/sutra/
│   │   ├── declarative/    # YAML spec parsing
│   │   ├── executor/       # Graph execution
│   │   ├── llm/           # Provider adapters
│   │   └── tools/         # Tool registry
│   └── docs/              # User guides, examples
│
├── smrti/                  # Memory system
│   ├── src/
│   │   ├── tiers/         # Memory tier implementations
│   │   ├── consolidation/ # Memory lifecycle
│   │   └── query/         # Retrieval strategies
│   └── docs/
│
├── konf-tools/            # Tool integration
│   ├── src/
│   │   ├── registry/      # Tool discovery
│   │   ├── adapters/      # External service adapters
│   │   └── validation/    # JSON Schema validation
│   └── docs/
│
├── konf-gateway/          # API gateway
│   ├── src/
│   │   ├── api/           # REST endpoints
│   │   ├── session/       # Session management
│   │   └── auth/          # Multi-tenancy
│   └── docs/
│
└── ideas-and-docs/        # Research documentation
    ├── docs/design/       # Architecture docs
    ├── docs/research/     # Research papers
    └── docs/examples/     # Use cases